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Abstract
We investigate tunnelling of electrons through a superconducting grain at
nanometre scales. The conductance is computed from a network of many-body
states, taking into account contributions from normal tunnelling and Andreev
reflection. The contribution from Andreev reflection is maximized if the grain
ground state is degenerate with a state having an extra pair of electrons. By
increasing the Coulomb interaction within the grain, the system exhibits a
crossover from the Andreev behaviour to the Kondo behaviour at a point where
the charging energy is equal to the pairing energy.

1. Introduction

In recent years there has been continuous interest in investigations of properties of small
superconducting grains [1–5]. The finite size of the grain leads to splitting of energy levels
and the Coulomb blockade effect. The even–odd parity of occupation number induced by
Coulomb blockade has been observed in experiments [1]. In measurements of theI–V curves
of tunnelling through nanometer-sized Al grains, Ralph, Black and Tinkham [2] have shown
that a gap significantly larger than the typical level spacing between single-electron eigenstates
still exists. However, if the grain size is further reduced (<5 nm), no gap in the spectrum can
be detected.

The tunnelling conductance through a superconducting grain in the Coulomb blockade
regime has been investigated by several authors [3]. In these studies the ordinal order
parameter from the mean-field theory is used for the grain. As pointed out by Jankó et al [4],
the use of the order parameter in a system with a fixed number of electrons is problematical
because the superconducting order is off-diagonal in particle number. This problem is
caused by the level splitting and the Coulomb blockade as in a grain at nanometer scales
the charging energy plus the level spacing is comparable with the pairing energy [1, 2].
Several theoretical approaches have been developed to address the crossover between the
superconducting and normal state at nanometer scales beyond the concept of the mean-field
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gap [5–7]. Since the zero resistance and the Meissner effect disappear when the size shrinks
to a few nanometers, an appropriate quantity is needed to illustrate the remnant effects of
superconductivity. The parity gap�M, which is related to the extra ground-state energy of
a system with an unpaired electron and can be determined in the canonical ensemble, was
proposed in [6].

Because the characteristic features of bulk superconductors are no longer retained in a
grain in the presence of Coulomb interaction, it is interesting to investigate the tunnelling
process in a theoretical approach which does not rely on the mean-field order parameter off-
diagonal in electron number. In this paper we calculate the tunnelling conduction in various
values of Coulomb interaction, gate voltage and temperature. We solve the grain Hamiltonian
exactly by using the method of [8]. Then an equivalent multichannel network of many-body
states [9] which represents the Schrödinger equations of the system is constructed to describe
the tunnelling processes. The results show that the contribution from Andreev reflection is
maximized if the ground state of the grain is degenerate with the state having an extra pair
of electrons. By increasing the Coulomb interaction the Andreev reflection is suppressed and
the system shows the characteristics of normal quantum dots. Especially, if the Coulomb
energy is larger than the pairing energy, the Kondo effect can be observed. We illustrate the
crossover from the Andreev behaviour to the Kondo behaviour in increasing the Coulomb
energy.

The paper is organized as follows: in the next section we describe the Hamiltonian of the
system and the basic formulas; in the third section the numerical results and their physical
meanings are presented; in the last section a brief summary is given.

2. Hamiltonian and basic formulas

We consider a superconducting grain embedded between two leads:

H = HSC +HL +HC (1)

whereHSC is the sub-Hamiltonian of the grain,

HSC =
∑
jσ

(
ε0
j + Vg

)
c
†
jσ cjσ − λd

∑
ij

c
†
i+c

†
i−cj−cj+ + (en)2/(2C) (2)

HL stands for the one-dimensional leads,

HL =
∑

〈mm′〉( �=0)σ

t0a
†
mσam′σ +

∑
m( �=0),σ

ε0a
†
mσamσ (3)

andHC is the coupling between them,

HC =
∑
jσ

(
ta

†
−1,σ cj,σ + ta†1,σ cj,σ + h.c.

)
. (4)

Here,c†jσ anda†mσ create an electron of spinσ in the jth level of grain and on themth site

of leads, respectively,n = ∑
jσ c

†
jσ cjσ , C is the grain capacitance andλ is the strength of

pairing interaction. We assume equidistant levelsε0
j with spacingd. The position of the grain

is atm = 0. The states on the grain are coupled with the leads by hoppingt. The gate voltage
Vg is used to tune the particle number. AsHSC is a BCS reduced Hamiltonian, onlyN levels
within the range of Debye frequency are taken into account. In the leads the site energy isε0
and the nearest-neighbour hopping ist0.
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HSC can be exactly diagonalized [8]. Since the interaction terms inHSC only scatter the
pair from one level to another, the labels of the singly occupied levels and their spins are
good quantum numbers. For an isolated grain the particle numberM is also a good quantum
number. The lowest-lying eigenstate withnd doubly occupied levels and a set ofns singly
occupied levels with specified spins,(S,�), is [8]

�(M, S,�) = 1

R

nd∏
l=1


∑
j �∈S

c
†
j+c

†
j−

2ε0
j − el


 ∏
(i,σ )∈(S,�)

c
†
iσ |0〉 (5)

with R the normalization factor,M = 2nd + ns andel the particular solutions of equations [8]

1

λd
+

nd∑
l′=1( �=l)

2

el′ − el
=

∑
j �∈S

1

2ε0
j − el

. (6)

The eigenenergy of this state isE(M, S) = E0(M, S) + MVg + (eM)2

2C with E0(M, S) =∑nd
l=1 el +

∑
j∈S ε0

j . For given Fermi levelEF, at zero temperature the particle numberM is
determined by inequalities

min
S

[E(M + 1, S)] � min
S

[E(M, S)] + EF
(7)

min
S

[E(M − 1, S)] + EF � min
S

[E(M, S)].

Note that states described by equation (5) have a fixed number of electrons on the grain,
while the mean-field superconducting states are expressed in the grand canonical ensemble.
Thus, they are suitable for taking into account the restriction in the electron number on the
grain due to the Coulomb blockade. In calculating the tunnelling conductance, we consider
the following states containing the grain states plus one tunnelling electron or hole [9]:

"(M, S,�,m, σ) = a†mσ�(M, S,�)|F 〉
"(M + 2, S,�, m̄, σ ) = amσ�(M + 2, S,�)|F 〉
"(M + 1, S,�) = �(M + 1, S,�)|F 〉 (8)

"(M − 1, S,�,−1, σ,1, σ ′) = a
†
−1σ a

†
1σ ′�(M − 1, S,�)|F 〉

"(M + 1, S,�,−1̄, σ, 1̄, σ ′) = a−1σ a1σ ′�(M + 1, S,�)|F 〉
where|F 〉 denotes the Fermi sea in the leads. The last two states in equation (8) contain two
electrons or holes in the leads, representing the lowest order of the cotunnelling process. An
eigenfunction can be expressed as a linear combination of them∑
i(±1),m( �=0)

∑
S,�,σ

pi(m, σ, S,�)"(M − i + 1, S,�,m, σ) +
∑
S,�

q(S,�)"(M + 1, S,�)

+
∑
S,�

c1(S,�)"(M − 1, S,�,−1, σ,1, σ ′)

+
∑
S,�

c−1(S,�)"(M + 1, S,�,−1̄, σ, 1̄, σ ′). (9)

If M is even, for givenσ one has equations

χipi(m) + sign(i)t0[pi(m + 1) + pi(m− 1)] = Epi(m) form �= 0,1,−1 (10)

χipi(±1) + sign(i)t0pi(±2) + ti,1q + ti,2ci = Epi(±1) (11)
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Figure 1. Schematic illustration of the Schrödinger equations of many-body states with a tunnelling
electron or hole. The circles represent the coefficients in the linear combination of equation (9);
the lines illustrate the couplings between them in the Schrödinger equations. The open circles
and the broken lines denote the cotunnelling process. (a)M is even. The Andreev reflection is
indicated by thick arrows. (b)M is odd. Spin degrees of freedom are mixed.

where

q =
∑

i(±1), m(±1)

ti,1pi(m)/(E − χ0,0)

ci =
∑
m(±1)

ti,2pi(m)/(E − χ0,i)

χ1 = E(M,0) + ε0 χ−1 = E(M + 2,0)− ε0

χ0,0 = E(M + 1, S) χ0,i = E(M − 2i + 1, S) + 2 sign(i)ε0

with S the singly occupied level as close as possible toEF, and

ti,1(2) = 〈ψi,1(2)|HC |"(M − i + 1,0,0,−1, σ )〉
ψi,1 = "(M + 1, S, σ )

ψi,2 = "(M − 2i + 1, S,−σ,−1, σ, î, σ )

with î = 1 for i = 1 and î = 1̄ for i = −1. Here, for simplicity we include only the
low-lying configuration forS. The equations can be easily extended to include all the
intermediate states by replacing termsti,1q andti,2ci in equation (11) with sums over possible
configurations. Schrödinger equations (10) and (11) correspond to an equivalent two-channel
network as shown in figure 1(a). The upper channel represents the propagation of an electron
above the Fermi level of the leads together withM (even) paired electrons on the grain. The
lower channel stands for a hole below the Fermi level accompanied byM + 2 paired electrons
on the grain. If one electron above the Fermi level is injected onto the left lead, it may be
reflected back to the upper channel as an electron, or to the lower channel as a hole, referred
as the Andreev reflection. The injected electron can also be transmitted to the right lead as
an electron, representing the normal tunnelling, or as a hole, equivalent to an electron flowing
from the right lead to the grain. On the other hand, when a hole is injected from the right lead,
it can also be reflected or transmitted as a hole or as an electron. The flow of electrons and
holes results in current in opposite directions. Thus, when a bias is applied to enhance the
potential of the left lead, the left electron channel and the right hole channel are incoming ones
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and the other two are outgoing ones for the current through the network. From the Schrödinger
equations listed above, we can solve the 2× 2 transmission matrix of the network

sii′;σσ ′(M) = 2iei(ki+ki′ )
√

sin(ki) sin(ki′)uii′δσσ ′

2eiki′ vii′ − 1
(12)

where i and i ′ are pseudo-spin indices distinguishing the particle(i, i ′ = 1) and hole
(i, i ′ = −1), ki the corresponding momentum satisfying the dispersion relationE − χi =
2 sign(i)t0 coski and

uii′ = −
ti,1ti′,1

(
1 − 2eik

−i t
2
−i,2δii′

t0(E−χ0,−i )

)

2eik−i′
(
t2−i′,1 + t2−i′,2

E−χ0,0
E−χ0,−i′

)
− t0(E − χ0,0)

+
t2i,2δi,i′

t0(E − χ0,i)
(13)

vii′ = −
t2
i′,1

(
1 − 2eik−i′ t2−i′,2

t0(E−χ0,−i′ )

)

2eik−i′
(
t2−i′,1 + t2−i′,2

E−χ0,0
E−χ0,−i′

)
− t0(E − χ0,0)

+
t2
i′,2

t0(E − χ0,i′)
(14)

In this notations11;σσ ′ ands−1,−1;σσ ′ are the amplitudes of normal transmission of electron and
hole channels, respectively, ands1,−1;σσ ′, s−1,1;σσ ′ the amplitudes of the Andreev reflection.

If M is odd, there is an unpaired electron on the grain before tunnelling. A tunnelling
electron with spin opposite to this unpaired electron can be transmitted through the grain via
a paired intermediate state. In this case there is a mixing for both the spin and pseudo-spin
degrees of freedom. Thus there are four channels coupled, as shown in figure 1(b). In this case
there is an intermediate state withM + 1 electrons on the grain shown by the close circle and
several intermediate states withM − 1 andM + 3 electrons on the grain, denoted by the open
circles in figure 1(b). The latter represent the cotunnelling process in which two electrons or
two holes appear in the leads. The expressions for the transmission and reflection coefficients
can be obtained from solving the corresponding Schrödinger equations

sii′;σσ ′(M) = 2iei(ki+ki′ )
√

sin(ki) sin(ki′)uii′

2eiki′vii′ − 1
(15)

where

uii′ = −
ti,3ti′,3

(
1 − 2eik−i t2−i,4δii′ δσ,−σ ′

t0(E−χ1,−i )

)

4eik−i′
(
t2−i′,3 + t2−i′,4

E−χ1,0
E−χ1,−i′

)
− t0(E − χ1,0)

+
t2i,4δi,i′δσ,−σ ′

t0(E − χ1,i)
(16)

vii′ = −
2t2
i′,3

(
1 − 2eik−i′ t2−i′,4

t0(E−χ1,−i′ )

)

4eik−i′
(
t2−i′,3 + t2−i′,4

E−χ1,0
E−χ1,−i′

)
− t0(E − χ1,0)

+
2t2
i′,4

t0(E − χ1,i′)
(17)

with

ti,3(4) = 〈ψi,3(4)|HC |"(M − i + 1, S,−σ,−1, σ )〉
ψi,3 = "(M + 1,0,0) (18)

ψi,4 = "(M − 2i + 1,0,0,−1, σ, î,−σ)
and

χ1,0 = E(M + 1,0), χ1,i = E(M − 2i + 1,0) + 2 sign(i)ε0. (19)
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By applying a bias voltageVb, there are two contributions to the current: the normal
tunnelling and the Andreev reflection. The tunnelling current can be calculated from elements
of the transmission matrix and the Landauer–Bütticker formula

I = e

h

∫
dE

∑
M,i,i′,σ,σ ′

|sii′;σσ ′(E,M)|2
[
Fi

(
E − ieVb

2
,M − i + 1

)

×F−i′
(
E +

i ′eVb
2

,M − i ′ + 1

)
− Fi

(
E +

ieVb

2
,M − i + 1

)

×F−i′
(
E − i ′eVb

2
,M − i ′ + 1

)]
(20)

whereFi(E,M) is the thermal distribution probability at energyE of many-body states with
M electrons on the grain and an electron (i = 1) or a hole (i = −1) in the lead. We assume the
local equilibrium for the grain and leads. Thus the statistical factor can be written as

F1(E,M) = P(M, T )f (E − E(M), T ) (21)

F2(E,M) = P(M, T )[1 − f (E − E(M), T )] (22)

whereP(M, T) is the thermal probability of grain state�(M), andf (E, T ) is the Fermi
distribution of electrons in the leads.

By taking the limitVb → 0, one can obtain the linear conductance

G = −e
2

h

∫
dE

∑
M,i,i′,σ,σ ′

kBT |sii′;σσ ′(M)|2Pi(M − i + 1, T )

×Pi′(M − i ′ + 1, T )
∂f (E − E(M − i + 1), T )

∂E
. (23)

The contribution from Andreev reflection is from the terms withi �= i ′, for which the statistical
factorFi(E,M − i + 1, T )Fi′ (E,M − i ′ + 1, T ) becomes large at low temperature only when
�(M) and�(M + 2) are nearly degenerate and have the lowest energy. Thus, the degeneracy
of the grain ground state with a state having an extra pair can be regarded as a condition for
observing the Andreev reflection. From equation (7) it can be seen that this condition can be
satisfied at certain values of gate voltage only when�M ≡ E0(M)−[E0(M+1)+E0(M−1)]/2,

the parity gap, is greater than the charging energye2

2C . On the other hand, the terms withi = i ′
give the contribution from normal tunnelling, which reaches a maximum at resonances as in
a normal quantum dot.

3. Numerical results of tunnelling conductance

From the above analysis it can be seen that there is a remarkable difference in the Andreev
reflection between even and oddM. Before calculation of conductance one should specify
the occupation status of the grain. By sweeping the gate voltageVg , M can be sequentially
changed. From inequality (7), the length of interval ofVg in which the particle number isM
can be expressed as

δVg(M) =
{
e2

C
− 2�M if e2

C
> 2�M

0 otherwise.
(24)

For evenM the intervalδVg(M) is always finite because of the negative�M due to the pairing.

For oddM, �M is positive. Thus, if�M > e2

2C , M will be always even and changed by two

each time in sweepingVg. On the other hand, if the Coulomb energy is larger,�M < e2

2C ,M
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Figure 2. Grain particle numberM as a function of the gate voltageVg . The single-particle levels

range asε0
j

= jd, for j = 1,2, . . . , N with N = 90. The BCS pairing strength isλ = 0.18.

The Coulomb energy ise2/(2C) = 0.3d. The upper inset is the corresponding energy of state
�(M) related to the energy of�(M = 68) for M = 66 (solid line), M = 68 (dashed line),
M = 70 (dotted line) andM = 72 (dot–dashed line). The circles indicate the degeneracy of�(M)

and�(M ± 2). The lower inset displaysM as a function ofVg for strong Coulomb interaction
(e2/(2C) = 1.3d) where odd occupations appear.

can be changed one by one but with different intervals for even and oddM. This situation is
illustrated in figure 2, whereM is plotted as a function ofVg and the corresponding energies

for states with differentM are shown. In the case of�M > e2

2C states�(M) and�(M + 2)
are lowest lying and degenerate at values ofVg whereM jumps by two. Thus, the contribution
to the conductance from the Andreev reflection is expected to reach the maximum at these

values ofVg. For�M > e2

2C M jumps between even and odd and at the jumping points
�(M) is degenerate with�(M + 1) rather than�(M + 2). In this case the contribution
from the Andreev reflection is small in the whole range ofVg. This implies that although the
Coulomb blockade has no effect on the inner spectrum of the superconducting grain except
for a constant shift, it does destroy the outer superconducting appearance, such as the Andreev
reflection.

From the obtained occupationM and the corresponding energies we calculate the conduc-
tance for various parameters. In figure 3 we plotG in the case of weak Coulomb interaction

(�M > e2

2C ) as a function ofVg for different temperatures. The main peaks appear at the gate
voltages where states�(M) and�(M + 2) are degenerate, corresponding to the contribution
from the Andreev reflection. The peaks are lowered and widened by increasing the temper-
ature, implying the destruction effect of the thermal fluctuations. Between two main peaks a
lower peak appears, corresponding to the contribution of the cotunnelling process represented
by the broken lines and open circles in figure 1(a). In this case the occupation number on the
grain is even, thus the cotunnelling does not change the spin and pseudo-spin indices, leaving
the paired grain state unchanged after tunnelling. This is different from the cotunnelling of
the normal quantum dots that changes the spin indices and leads to the Kondo effect in the
valley regime. However, the temperature dependence of these lower peaks is similar to that
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Figure 3. The conductance as a function of the gate voltage for different temperatures in the
case of weak Coulomb interactione2/(2C) = 0.1d. The other parameters are the same as those
in figure 2.kBT = 0.05d (solid line), 0.1d (dashed line), 0.15d (dotted line) and 0.2d (dash–dotted
line).

of the cotunnelling in the normal dots. Since there are only even occupations, the peaks can
be used to count the number of the pairs on the grain, rather than the single electrons.

In figure 4 we plot the conductance versus gate voltage in the case of intermediate

Coulomb interactione
2

2C ∼ �M . The contribution from the normal tunnelling is increased.
The main peaks correspond to the contribution from the Andreev reflection, while the lower
peaks are from the resonances in the odd occupations. The latter is much weaker than the
former because of the low thermal probability of the odd occupations. Note that in the shorter
valleys between high and low peaks the conductance is lowered by increasing the temperature
due to the cotunnelling process. In this case the cotunnelling can partly lead to a spin–flip like
the Kondo effect in the normal quantum dot.

The behaviour of tunnelling conductance in the case of strong Coulomb interaction
e2

2C > �M is displayed in figure 5. In this case the contribution from the normal tunnelling
is dominant. The main peaks correspond to resonances in both odd and even occupations.
There are two small shoulders beside a resonance peak of the odd occupation. They are due
to the cotunnelling in particle and hole channels, respectively, which lead to the Kondo effect
with spin–flip on the grain. The behaviour is similar to that of the normal quantum dots,
except for the different peak spacing between the odd and even occupations, reminiscent of
the remainder of the pairing gap, and the cotunnelling in two (particle and hole) channels.

In figures 6 and 7 we showPA and PS, the fractions of contributions from Andreev
reflection and spin–flip cotunnelling to the conductance, respectively. From figure 6 it can be
seen that the Andreev reflection occurs only in narrow ranges ofVg, reflecting the restriction
on variation of particle number of the grain. The peak height is reduced by increasing the
Coulomb interaction, and approaches zero in the case of strong interaction. In contrast, by
increasing interaction the peak height of the spin–flip cotunnelling is increased from zero, as
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Figure 4. The same as in figure 3 but withe2/(2C) = 0.3d.
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Figure 5. The same as in figure 3 but withe2/(2C) = 0.8d.

can be seen from figure 7. There are two cotunnelling peaks corresponding to the shoulders
beside a resonance peak of odd occupation in figure 5. They are produced by two intermediate
states in particle and hole channels which have different energies and electron numbers on the
grain. The peaks ofPS are narrow because only the low order of cotunnelling process in real
space is included in the present calculation.
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Figure 6. The fraction of contribution from Andreev reflection to the conductancePA as a
function of the gate voltage.e2/(2C) = 0.1d (solid line), 0.3d (dashed line) and 0.8d (dotted line).
kBT = 0.05d and the other parameters are the same as those in figure 3. Fore2/(2C) = 0.8d
PA ∼ 0, so the dotted curve could not be seen.
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Figure 7. The fraction of contribution from spin–flip cotunnelling to the conductancePS
as a function of the gate voltage. The parameters are the same as those in figure 6. For
e2/(2C) = 0.1dPS ∼ 0, so the solid curve cannot be seen.
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Figure 8. The peak intensities ofPA andPS as functions of Coulomb interaction. The parameters
are the same as those in figure 6.

Since the Andreev reflection is suppressed by the Coulomb interaction and the Kondo
effect is suppressed by the pairing, one can expect a crossover from the Andreev to the
Kondo regime by increasing the interaction. Such a crossover is clearly displayed in figure 8,
wherePA andPS are shown as functions of the interaction. It can be seen that the crossover
occurs neare2/(2C) ∼ �M . For e2/(2C) � �M the Kondo-type spin–flip transmission
is nearly zero(PS ∼ 0) and the amplitude of Andreev reflection(PA) is finite, while for
e2/(2C) � �MPS is finite andPA ∼ 0.

In this system there are three characteristic energies, level spacingd, pairing energy�M
and Coulomb interactione2/(2C). As illustrated above the crossover is mainly determined by
the values of�M ande2/(2C). The level spacing only influences the internal spectrum of the
grain. Generally, by reducing the size of the graine2/(2C) is increased and�M is decreased.
Thus, the crossover from Andreev to Kondo behaviour could be observed by changing the size
of the grain.

4. Conclusions

We have studied the Andreev reflection and Kondo effect in tunnelling through a
superconducting grain in the presence of Coulomb interaction. The Andreev reflection is
suppressed by the Coulomb interaction on the grain due to the fixing trend of electron number,
while the Kondo effect is suppressed by the pairing due to the reduction of probability of
odd occupations. Thus, in such systems the main energy scales are the pairing energy
�M and the charging energye2/(2C). Whene2/(2C) is increased from zero, the tunnelling
conductance exhibits the crossover from Andreev behaviour to Kondo behaviour near the point
e2/(2C) ∼ �M . This crossover reflects the transition of the system from the superconducting
grain to the normal quantum dot.
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[4] Janḱo B, Smith A and Ambegaokar V 1994Phys. Rev. B 50 1152
[5] von Delft J, Zaikin A D, Golubev D S and Tichy W 1996Phys. Rev. Lett. 77 3189

Smith R A and Ambegaokar V 1996Phys. Rev. Lett. 77 4962
[6] Matveev K A and Larkin A I 1997Phys. Rev. Lett. 78 3749
[7] Berger S D and Halperin B I 1998Phys. Rev. B 58 5213

Mastellone A, Falci G and Fazio R 1998Phys. Rev. Lett. 80 4542
Braun F and von Delft J 1998Phys. Rev. Lett. 81 4712
Dukelsky J and Sierra G 1999Phys. Rev. Lett. 83 172

[8] Richardson R W 1977J. Math. Phys. 18 1802
Sierra G, Dukelsky J, Dussel G G, von Delft J and Braun FPreprint cond-mat/9909015

[9] Xiong S-J and Xiong Ye 1999Phys. Rev. Lett. 83 1407


